Prof. Dr. Manfred Lehn T. Weißschuh

4. Übung zur Vorlesung

Algebra I: Körper, Ringe, Moduln

im Wintersemester 2015/2016

Aufgabe 1 — Es sei G eine Gruppe mit Zentrum Z. Zeige:

a) Ist G eine Gruppe mit zyklischer Faktorgruppe G/Z, so ist G abelsch.

Es sei nun p eine Primzahl. Zeigen Sie:

- b) Hat G die Ordnung p^2 , so ist G abelsch.
- c) Hat G die Ordnung p^3 und ist nicht abelsch, so ist $Z \cong \mathbb{Z}/p$ und $G/Z \cong \mathbb{Z}/p \times \mathbb{Z}/p$.

Aufgabe 2 — Die von den Quaternionen I, J erzeugte Untergruppe

$$Q:=<\begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}> \subset \operatorname{Gl}_2(\mathbb{C})$$

heißt Quaternionengruppe. Zeige, dass |Q| = 8 und bestimme alle Untergruppen von Q. Welche Untergruppen sind Normalteiler?

Aufgabe 3 — Betrachte die folgenden fünf Gruppen der Ordnung 8,

$$\mathbb{Z}/8$$
, $\mathbb{Z}/4 \times \mathbb{Z}/2$, $\mathbb{Z}/2 \times \mathbb{Z}/2 \times \mathbb{Z}/2$, D_4 , Q .

Dabei ist D_4 die Diedergruppe, die von der Spiegelung $\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$ und der Drehung $\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ erzeugt wird, und Q ist die Quaternionengruppe:

(a) Zu welcher dieser Gruppen ist die Gruppe

$$N = \left\{ \begin{pmatrix} 1 & * & * \\ 0 & 1 & * \\ 0 & 0 & 1 \end{pmatrix} \right\} \subset GL_3(\mathbb{F}_2)$$

isomorph?

(b) Zeige, daß es bis auf Isomorphie keine anderen Gruppen der Ordnung 8 als die genannten gibt. [Hinweis: Betrachte ein Element g von maximaler Ordnung n und diskutiere die möglichen Fälle.]

Aufgabe 4 — Es sei $q = p^s$ eine Primzahlpotenz und \mathbb{F}_q ein Körper mit q Elementen. Die Gruppe $\mathrm{Gl}_n(\mathbb{F}_q)$ der invertierbaren $n \times n$ Matrizen mit Koeffizienten in \mathbb{F}_q operiert durch Linksmultiplikation auf dem Vektorraum \mathbb{F}_q^n . Man zeige:

- a) \mathbb{F}_q^n besteht aus genau zwei Bahnen: $\{0\}$ und $\mathbb{F}_q^n \setminus \{0\}$.
- b) Die Standgruppe des ersten Standardbasisvektors ist

$$H = \left\{ \left(\begin{array}{c|c} 1 & u \\ \hline 0 & A \end{array} \right) \middle| A \in \mathrm{Gl}_{n-1}(\mathbb{F}_q), u \in \mathbb{F}_q^{n-1} \right\}.$$

- c) Leite aus der Bahnengleichung und den Aussagen a) und b) eine rekursive Beziehung für die Gruppenordnungen von $Gl_{n-1}(\mathbb{F}_q)$ und $Gl_n(\mathbb{F}_q)$ her.
- d) $|Gl_n(\mathbb{F}_q)| = q^{\binom{n}{2}} \prod_{k=1}^n (q^k 1).$